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Traits for prey acquisition form the phenotypic interface of predator–prey
interactions. In venomous predators, morphological variation in venom
delivery apparatus like fangs and stingers may be optimized for dispatching
prey. Here, we determine how a single dimension of venom injection sys-
tems evolves in response to variation in the size, climatic conditions and
dietary ecology of viperid snakes. We measured fang length in more than
1900 museum specimens representing 199 viper species (55% of recognized
species). We find both phylogenetic signal and within-clade variation in rela-
tive fang length across vipers suggesting both general taxonomic trends and
potential adaptive divergence in fang length. We recover positive evolution-
ary allometry and little static allometry in fang length. Proportionally longer
fangs have evolved in larger species, which may facilitate venom injection in
more voluminous prey. Finally, we leverage climatic and diet data to assess
the global correlates of fang length. We find that models of fang length evol-
ution are improved through the inclusion of both temperature and diet,
particularly the extent to which diets are mammal-heavy diets. These find-
ings demonstrate how adaptive variation can emerge among components
of complex prey capture systems.
1. Introduction
Understanding how the functional traits of predators evolve in response to vari-
able selective pressures links trophic ecology to the evolution and maintenance
of biological diversity. Trophic traits mediate the interactions between predators
and their prey, and therefore provide an opportunity to study the evolution of
phenotypic diversity in relation to both abiotic and biotic pressures [1]. When
alternative forms of a functional trait confer high fitness depending on ecologi-
cal conditions, the power of selection to maintain diversity is amplified (e.g. bill
size in Darwin’s finches [2]). Predator–prey interactions are typically viewed
through the lens of an escalatory (i.e. ‘bigger is better’) arms race. Yet, ecologi-
cally mediated specialization into multiple optima has been supported in
predator–prey systems such as raptor talon shape, claw size in crabs and
canine tooth length in cats [3–5]. These predator–prey interactions belong to a
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class where physical damage alone incapacitates prey, but a
great diversity of predator–prey interactions, spanning cni-
darians to vertebrates, are mediated more by the injection
of venoms into prey rather than purely by physical damage.

Fangs, stingers, spines and harpoons are used by animals
to capture and kill prey. The primary function of these phys-
ical weapons is the injection of venoms that cause damage on
a physiological level, attacking basal organismal processes
such as hemostasis, neurotransmission and muscle function
[6]. The composition and adaptive evolution of toxins has
been used as a model system to investigate molecular struc-
ture–function relationships, gene family evolution and the
complex pathway between genotype and phenotype [7].
There may be equally strong selection on morphological
variation in the venom injection apparatus among taxa
[8,9]. If prey differ in size, shape or handling requirement,
alternative evolutionary optima may exist for the venom
injection system, providing a route to diversification [10–12].

Viperid snakes, such as rattlesnakes, lanceheads, adders
and habu have evolved modularized, solenoglyphous
fangs. These teeth are hollow, positioned at the front of the
mouth, and are the only teeth attached to a highly mobile
maxilla bone that allows folding against the roof of the
closed mouth. Extreme rotation of a viper’s maxilla swings
the fang forward during a strike. This folding action in
vipers modularizes the fang with respect to the distance
between the roof and floor of the mouth, allowing for
increased fang length to evolve [13]. Despite the structural
freedom to evolve longer fangs, there is considerable vari-
ation in proportional fang length relative to mandible size
among species, suggesting adaptive variation.

Selection for longer or shorter fangs may come from mul-
tiple sources, and therefore, phylogenetically informed
modelling across a large sample of taxa with diverse habitats
and life histories is required to robustly test hypothesized cor-
relates of fang length evolution. As gape-limited predators that
swallow prey whole, maximum prey size for a viper is associ-
ated with the overall size of the snake’s head [14–16]. Based on
the square-cube law and isometric scaling of prey body pro-
portions, a prey item that is twice the dimensions of another
will have eight times the tissue volume, diluting both the con-
centration of venom and the impact of physical damage dealt
by the fangs. This volumetric discrepancy across body sizes is
further compounded by divergence from isometric growth—
allometry—often producing more robust shapes in larger ani-
mals (e.g. disproportionately larger cross-sectional areas,
thicker fat layers and tougher protective coverings [17,18])
and therefore predicting positive allometry in snake fangs. In
a study of 30 species, Pough & Groves [19] showed positive
allometry as well as evidence that tropical snake genera in
Asia, Africa and South America show the longest relative
fang lengths. However, the extent to which the observed allo-
metric slopes were a product of static versus evolutionary
allometry was unclear given wide variation in body size
both within and between species. Climatic regimes are gener-
ally known to impact vertebrate and invertebrate body size
distributions through factors such as heat-transfer dynamics
(i.e. Bergmann’s rule) or potential for evaporative water loss
[20–22]. As a result, the largest prey species of several ver-
tebrate and invertebrate groups are found at warmer
temperatures, generally in the tropics.

Differences in the behaviour or morphology among
specific prey types may also lead to longer or shorter fangs
in snakes with different diet compositions [10]. Recently,
Cleuren et al. [11] used a phylogenetically broad sample of
Colubroid snakes to show that two fang dimensions,
elongation and sharpness, were predicted by feeding on
soft prey versus scaly and chitinous prey. Here, we densely
sample fang lengths of viperid snakes to reveal evolutionary
trends in fang evolution within and between clades, and pair
fang length with detailed quantitative rather than qualitative
estimates of dietary variation to interrogate the role of taxo-
nomic diet composition and prey features such as ‘softness’
in fang evolution. Our primary aims were to (i) test the role
of evolutionary versus static allometry in explaining viper
fang length and (ii) to test the association of climatic and diet-
ary factors with fang length evolution in a comparative
phylogenetic, model-testing framework.
2. Materials and methods
(a) Specimens and morphological measures
We sampled 1905 viperid museum specimens comprising 199
recognized species (electronic supplementary material, dataset
S1 contains morphometric and collection information). For each
snake, we measured the left and right fang length with a digital
caliper from tip to its anterior connection to the maxilla (see elec-
tronic supplementary material, figure S1). The average of these
two measurements (hereafter ‘fang length’) was used in sub-
sequent analyses. We measured body size as snout-to-vent
length. Finally, we photographed the dorsal aspect of the head
of each snake on a 0.5 cm2 grid using a digital camera. Using
these photographs and the program IMAGEJ v1.52a [23], we
obtained the distance from the tip of the rostrum to the start of
the midpoint of the jaw rictus (see electronic supplementary
material, figure S2).

A key consideration in analysing fang length evolution is to
control for the size of the snake, and options include linear
models with size covariates or ratios of fang length to other
body size metrics. As ratios are problematic forms of control in
regression models [24], regression models described below use
raw fang length as the independent variable, while including
head length as a covariate. We also report relative fang length
as fang length divided by head length, as this proportion is an
independent complex trait of each species [25], preserves the allo-
metric component of fang length and is both functionally
relevant [26] and intuitive (e.g. fang length can be discussed as
a percentage of head length). We divide by head length because
it physically limits the length a fang could achieve [27], and
predicts gape size [28].

(b) Evolutionary allometry
We tested for evolutionary allometry by modelling the relationship
between log-transformed fang length versus log-transformed mean
head length across 199 species. We employed phylogenetic gener-
alized least-squares (pgls) analyses as implemented in the nlme
[29] package in R. We fitted a Pagel’s λ correlation structure with
the corPagel function in ape [30] using the viper phylogeny of
Alencar et al. [31], allowing a maximum-likelihood estimate of λ
during model fitting. We also used the phyl.RMA function in phy-
tools [32] to fit a phylogenetic reduced-major axis regression
(RMA) model. We fitted an RMA due to its common use in allome-
try studies including snakes [19] but see Kilmer & Rodríguez [33]
for a review of its use and drawbacks. Contributions of various
types of allometry must be parsed [34]. We ruled out ontogenetic
allometry by including only adult specimens in our analyses,
while quantifying the potential role of static allometry by calculat-
ing allometric slopes from linear regressions of log-transformed
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fang length versus log head length within each of the 54 species for
which we measured more than 10 animals. If the proportionality of
fang length to body size across species is primarily a product of
evolutionary allometry, we would expect the interspecific allo-
metric slope to diverge from a value of one, while most
intraspecific allometric slopes will be near one (e.g. [35]).

(c) Climatic data
We used our list of measured viper species to query the Global
Biodiversity Information Facility (GBIF; https://www.gbif.org/)
for localities using occ_search in the rgbif R package, with ‘has-
GeospatialIssue’ set to ‘FALSE’. This search resulted 109 060
occurrence points. We then used the getData and extract func-
tions from the raster package [36] to match all 19 bioclim
variables from WorldClim (www.worldclim.org) at a 2.5 min
resolution to each GBIF locality, extracting the median values
of mean annual temperature (bio1) and mean annual precipi-
tation (bio12) for each snake species (called ‘temperature’, and
‘precipitation’ henceforth). We then used the princomp function
in base R to perform a principal components analysis on all 19
bioclim variables across the localities (electronic supplementary
material, table S1) to derive an environmental PC1 (henceforth
envPC1) that explained 91% of environmental variation present.

(d) Diet data
We gathered results from 85 previously published studies reporting
gut contents of various species of vipers (electronic supplementary
material, table S2). We included species for which the sum of the
diet items reported was≥ 15 (range 15–1031 prey items). Seventy-
one species of vipers met our cutoff. For each species, we calculated
diet composition as a per cent contribution by each of six cat-
egories. Five categories consisted of vertebrates by taxonomic
class (i.e. mammals, birds, reptiles, amphibians and fish), and the
sixth category summarized the contribution of arthropod
invertebrates including insects, arachnids and centipedes.

(e) Comparative analyses
We examined fang evolution and its correlates with phylogenetic
comparative methods. Using Alencar et al.’s [31] maximum clade
credibility tree, we calculated Blomberg’s K [37] and Pagel’s λ
[38] to characterize phylogenetic signal using the phylosig func-
tion in the phytools package [32]. We then used contMap in
phytools to produce a continuous trait mapping of fang length :
head length ratio to the phylogenetic tree.

We evaluated support for alternative environmental models
of species’ mean fang length on the full set of snakes for which
we could pair fang and environmental data (N = 186) in order
to assess potential environmental correlates with the largest
global sampling possible. We used phylogenetic generalized
least squares (pgls), as implemented in nlme [29]. We fitted
four models of species’ mean fang length (head length alone,
temperature, precipitation and envPC1) with species mean
head length as a covariate in all models. To account for phyloge-
netic uncertainty in these estimates, we ran all models iteratively
across the posterior distribution of 200 trees from Alencar et al.
[31] and compare them using model weights based on Akaike’s
information criterion (AICc).

Having established temperature as the best abiotic environ-
mental predictor of fang length (see Results), we next modelled
fang length in the smaller dataset of 71 viper species for which
we had collated diet data using pgls, which can accommodate
continuous predictors including proportions [39]. Both relative
fang length and diet composition, as proportion data, were
logit transformed to place the proportions in a continuous
rather than 0–1 bounded space [40]. Bayesian multiplicative
replacement of zero values with small positive values was
done using the cmultRepl function from the R package ‘compo-
sitions’ [41] to allow both logit transformation, as well as the
calculation of the first and second principal components of the
compositional diet matrix (henceforth dietPC1 and dietPC2)
using pcaCoDa in the robCompositions package [42] in ‘robust’
mode (electronic supplementary material, table S3).

Each of these pgls models consisted of relative fang length as a
response, and head length and temperature as covariates. Three
alternative pgls models included a single diet component: pro-
portion amphibians, proportion mammals or proportion reptiles,
as these taxa loaded most strongly on the dietPC1 and dietPC2
(electronic supplementary material, table S3) and were not popu-
lated largely with zero values as were proportion birds and
proportion inverts. We also tested three functional models of
diet. We tested a ‘fluffy’ model by summing the proportions of
mammals and birds as we expect higher proportions of these
prey may select for longer fangs that can penetrate to the under-
lying tissue. Since differential fang breakage in soft versus hard
prey may be important to fang length evolution [10,11], we
tested a model that summed the proportion of mammals, birds
and amphibians, polarizing these soft-skinned diet items against
those with hard protective coatings (chitin or scales). Our third
functional model summed the proportion of mammals and invert-
ebrates (primarily centipedes) as this model demarcates
dangerous prey capable of chewing on the snake that is often
released quickly post-strike (e.g. [43]). Finally, we tested models
that included the dietPC1 or dietPC2 scores summarizing vari-
ation in the entire diet matrix. These alternative diet models
were compared using the AICc, alongside models that included
only head length or head length + temperature as a factor to deter-
mine if our top performing diet model provided a marked
improvement over a model with size and climatic data alone.
3. Results
(a) Positive evolutionary allometry in viper fangs
We foundapositive allometric relationshipbetween fang length
and head length across species (βpgls = 1.36, βRMA-pgls = 1.47,
R2 = 0.85, λ = 0.88, p < 0.0001), indicating evolutionary allome-
try in the relationship between fang and head lengths, such
that fangs increase in size 1.36–1.47 times the rate of heads
across species (figure 1a). The result of this allometry is rela-
tively larger fangs in larger headed snakes, on average. We
found little evidence for static allometry across the snakes in
our sample, as the relationship between fang length and head
length was not significantly different from 1.0 for 52 out of 54
species assessed (electronic supplementary material, table S4,
electronic supplementary material, figure S3), and the 95% CI
for the mean of these slopes included 1.0 (figure 1b). Notably,
many of the smallest species’ head sizes overlapped with the
largest (e.g. Lachesis sp. and Bitis gabonica) at the upper and
lower bounds of their head sizes, respectively (electronic sup-
plementary material, figure S4), while relative fang lengths
clearly remained distinct. Thus, proportionality of fang length
to head length in adult vipers appears to be mostly constant
within species, while diverging among species.

(b) Phylogenetic patterns of relative fang length
evolution

Our measurements of individual viperid relative fang length
showed high repeatability (R = 0.71 ± 0.04; electronic sup-
plementary material, methods) indicating that species’
means are informative for comparative analysis. Relative

https://www.gbif.org/
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Figure 1. (a) Allometric relationship between log-transformed fang length and log-transformed head length across 199 viper species. Linear fits of both standard
pgls with a λ correlation structure (blue dashed line) and RMA pgls (red dashed line) regression are shown. Regression equation corresponds to the RMA pgls model
fit. The black solid line shows a hypothetical isometric relationship intersecting the x-axis at the same place as the empirical relationship, to highlight the positive
allometry. Large red points correspond to pictured Crotalus transversus (left) and Bitis gabonica (right) highlighting ‘small’ and ‘large’ species representatives,
respectively. (b) Distribution of slope coefficients for the 54 species where greater than 10 individuals were measured. Relationships within species were not sig-
nificantly different from one in 52 of 54 tests. Vertical black line corresponds to mean slope estimate of the 54 species. Shaded area indicates 95% C.I. Blue and red
vertical lines correspond to the interspecific pgls slope estimates from (a). (Online version in colour.)
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fang length in vipers showed phylogenetic signal (figure 2;
electronic supplementary material figure S5 accommodates
visual diversity). Both Pagel’s λ (λ = 0.84, p < 0.0001) and
Blomberg’s K (K = 0.23, p = 0.003) confirmed significant phy-
logenetic signal for relative fang length across vipers. A
value of λ closer to one is reflective of the clade specific pat-
terns of small, medium and large relative fang sizes. Relative
fang length varied from only 13.6% of head length in the
African amphibian specialist Causus lichtensteinii to 37.1% of
head length in the South American generalist feeder Bothrops
taeniatus. Relatively short fangs characterize the genera
Causus, Vipera, Cerrophidion, Mixcoatlus, Gloydius and the
small montane Crotalus, whereas relatively long fangs charac-
terize the genera Lachesis and Protobothrops and the subclade
of Bothrops containing species such as B. asper, B. atrox and B.
jararacussu. A Blomberg’s K of 1 corresponds to perfect Brow-
nian evolution along the tree, and the value of 0.23 for
viperid relative fang length suggests the presence of within-
clade variation in fang sizes, as is exemplified across Bitis,
Trimeresurus, Crotalus and Bothrops. Within-clade variation
at this level suggests potential adaptive divergence [37] in
viper fang length among close relatives. To evaluate support
for adaptive divergence in fang lengths, we quantified viper
diets and assessed correlations between relative fang lengths,
climate and taxonomic diet composition.
(c) Climatic correlates of fang length evolution
Model comparison of putative environmental predictors
revealed environmental correlates of fang length evolution
with small but detectable effects. The best-supported
environmental model of species’ mean fang length included
species’ mean head length (β = 0.34, T = 37.7, p < 0.001) and
temperature (β = 0.051, T = 2.7, p = 0.0086, R2 = 92.5%;
figure 3a,b). This model had the highest AIC model weight
across the full posterior distribution of phylogenetic trees
used for plgs replicate runs. The correlation between
warmer temperatures and longer fangs is visible in
figure 3b in the tendency for the darker red points to fall
above the best-fit line relating fang length and head length.
Unsurprisingly, the most important predictor of species’
mean fang size in these models is mean head length, explain-
ing R2 = 91.5% of the variation in fang length in a pgls model
with head length as the sole predictor. After accounting for
this size effect, our model shows that for each 1°C increase
in mean annual temperature, fang length increases by
0.051 mm, meaning snakes in the warmest areas will have
1.4 ± 1.0 mm longer fangs than those in the coolest areas, on
average, or around 16 per cent of the length of an average-
sized fang. Therefore, environmental variables explain a
rather small but detectable amount of fang length variation.
(d) Dietary correlates of fang length evolution
Viper diets, as reported in the literature, varied extensively in
this diverse group of snakes, including species that feed
solely on mammals, amphibians or reptiles, to generalists
that feed on prey from all six categories (electronic sup-
plementary material, table S5). Piscivory was recorded in
our collated diet dataset for only two species.

Diet information improved models of fang length variation
among vipers. Across the full posterior distribution of trees
from Alencar et al. [31], adding diet terms consistently
improved model fit relative to the HL-only model (best in
runs for 0/200 trees) and the HL+ temperature model (best
in 1/200 trees). There was some variability in which diet
model was best across the posterior distribution of trees,
which appeared to be a result of similar amounts of variance
being partitioned to models where the proportion of mammals
played a strong role. For example, the dangerous prey model is
largely defined by the per cent mammal value, since invert-
ebrates were comparatively rare in the dataset. The best
model of fang length for the majority (54%) of trees included
only the mammal portion of the diet (median Akaike weight =
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Figure 2. (a) Phenogram of relative fang length evolution across vipers. (b) Continuous trait mapping of relative fang length evolution on the best time-calibrated
phylogeny identified by Alencar et al. [31], pruned to 199 species present in our fang data. Warmer colours indicate longer fangs relative to head length. (c)
Representative CT scans of two Crotalus species with (i) short (C. lepidus) and (ii) long (C. simus) relative fang lengths with fangs shaded red. Skull images
were provided by G. Fuentes and D. Paluh. (Online version in colour.)
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53%; figure 3c), whereas other means of parsing the diet data
produced models that tended to perform more poorly. The
second and third best-performing models were the dangerous
prey model (14% of trees) and fluffy prey model (12%). Since
these outperform the mammal model only occasionally, and
their proportions are highly correlated with the proportion of
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Figure 3. (a,c) Distribution of model weights from AIC model comparisons for each (a) environmental model or (c) diet model of fang length analysed using the
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mammals (electronic supplementary material, figure S7), these
results are not easily distinguishable from the role of mammals
alone. Other models were rarely competitive as the top models
for a given tree (figure 3c; electronic supplementary material,
table S6).

We next centred and standardized the HL, temperature
and logit-transformed mammal proportion of the diet so
that we could compare effect sizes among variables across
the full posterior distribution of trees from Alencar et al.
[31]. The standardized regression coefficient is largest for
head size (median = 3.84), followed by temperature (0.74),
and then proportion mammals in the diet (0.50; electronic
supplementary material, figure S8). Back transformation of
the logit-transformed coefficient revealed that, controlling
for head size and temperature, we expect fangs in snakes
that do not eat mammals to be smaller by between 1.3 and
1.8 mm compared to snakes that feed solely on mammals,
which would amount to approximately 18% of the length
of an average fang. As a post hoc assessment, we classified
each viper species by the most abundant prey category in
its diet, considering any snake where a single taxonomic
group made up more than 70% of the diet a specialist, and
classifying others as generalists. Dietary trends in fang
length evolution showed that vipers feeding predominantly
on mammals have longer fangs (when controlling for other
factors) than species feeding on other taxa, particularly
amphibian-eating taxa. These trends are repeated both in
the mammal specialist group and again within the generalists
when categorized by the most abundant taxa in their diets
(figure 3d,e; electronic supplementary material, figure S9).
Taken together, our assessment of correlations between
snake ecology and fang length suggests that living at
warmer temperatures and feeding predominantly on
mammals is associated with longer fangs.
4. Discussion
The fangs of vipers are highly specialized dental structures,
injecting venom from a duct that passes through the maxilla
and empties into the top of the hollow fang. Despite the
function of puncture and injection of venom seemingly
being simple, fangs vary extensively in shape and length
[10,11,27,44]. Our work quantitatively assessed several poten-
tial correlates of fang length evolution to provide insights into
the adaptive significance of this key functional trait linking
predator to prey. We found clear evidence for positive evol-
utionary allometry, as well as abiotic and biotic correlates of
fang length that suggest adaptive variation. Cundall [27]
suggested the use of natural history information to explore
the functional roles of fang length variation in vipers. Our
study represents this kind of integration of densely sampled
morphological, phylogenetic and ecological information,
revealing trends that highlight fang morphology as subject
to divergent natural selection pressures as snake species
vary in both size and ecology.

(a) Evolutionary allometry of viperid fangs
Pough & Groves [19] were the first to show evidence for posi-
tive evolutionary allometry in the relationship between fang
and head length using a dataset of 30 viperid species, but
their analyses included a small proportion of described
species and did not account for phylogenetic non-indepen-
dence due to shared ancestry. Our increased species
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sampling of 199 species and phylogenetically informed
assessment of the allometric slope coefficient leads to a
reduced estimate of the allometric coefficient (1.47 in our
study versus 1.77 for [19]), but one where fangs still grow
nearly 1.5 times faster than heads over the range of head
sizes in our study. Furthermore, we use intraspecific
regressions to estimate the slope coefficient across the range
of adult body sizes to show that much of the pattern in our
data is specifically attributable to evolutionary allometry,
with fixed patterns of relative fang length variation between
species, and not an extension of conserved trajectories of
static allometry [44,45]. The result of the allometric trajectory
across species is exaggerated fang size disparity between the
smallest and largest headed viperid species. As they are expli-
citly involved in trophic interactions, viper fangs provide an
example of a trophic trait showing positive evolutionary
allometry resulting from natural selection.

Larger headed snakes will also be those that eat the largest
prey, as prey size and snake head size are correlated [14,15].
While prey are not relatively more massive for large snakes
[16], a prey animal of twice the linear dimensions of a smaller
individual of the same shape will be eight times more volumi-
nous. Larger prey therefore contain more internal tissue upon
which venommust act andmay simply require a deeper bite to
allow rapid spread of venom in prey.

(b) Climatic and dietary correlates of fang length
evolution

Pough & Groves’s [19] observation that tropical snakes
tended to have larger fangs led us to consider potential abio-
tic environmental predictors of fang length. Though their
observations held, in that vipers living in warmer environ-
ments tended to have the largest fangs relative to body size,
this effect size is small explaining differences in fang length
of about 16% for an average-sized fang. Still, this observation
represents a rare documentation of climate predicting
functional trait variation in a predator guild.

The abiotic environment appears to impact body size in
all major taxa preyed upon by vipers, although the specific
relationships are taxon specific. For example, centipedes
tend to reach their maximum sizes in warmer areas [46].
Frogs and toads are largest in the warm tropics, while overall
trends in body size are best predicted by clines in the poten-
tial for desiccation [21]. Small rodents tend to be largest
where primary productivity is highest, which includes tropi-
cal areas, and generally are larger at warmer temperatures
[22]. The taxonomic specificity of the relationship between cli-
mate and species’ body size might form the basis of the small
effect of our measured variables on fang size. One caveat of
our approach is that the concentration of only certain
genera in the tropics could mean the small correlations
observed here are due to uncontrolled phylogenetic effects.
Dense geographical sampling of wide-ranging tropical taxa
such as Bothrops sp. may help resolve this in future work.

Comparing taxonomic and functional models of the
relationship between fang length and diet composition sup-
ported the contribution of mammals alone as the best diet
model of species’ fang length evolution. The effect of feeding
on mammals equates to modest increases of approximately
18% fang length for an average length fang. Notably, this
variation exists in addition to the allometric component of
fang length variation, which is inextricably associated with
diet since larger snakes tend to eat more mammals. The clear-
est distinction of fang length by diet occurs when comparing
mammal-eating to amphibian-eating viperids. Amphibians
represent the most extreme differentiation from mammals
in terms of prey morphology, as amphibian skin is unpro-
tected by layers of either fur, feathers, scales or chitinous
armour. Taken together, shorter fangs in amphibian-eating
snakes suggests evolution from longer to shorter fangs
when specializing more on amphibians, potentially due to
combinatorial selection from thinner integuments and a
bite-and-hold prey handling behaviour [47].

Mammals also present a prey morphology characterized
by a low average surface area to volume ratio, which may
be expected to favour longer fangs regardless of taxonomic
affinity. Lizards and centipedes are very common in many
viper species’ diets and are more elongate prey compared
to mammals. When feeding on elongate prey, relatively
short fangs will penetrate to the deepest layers of prey tissues
for intra-muscular or intra-coelomic injection of venom,
whereas relatively longer fangs may be needed for the dee-
pest possible injection into large rodents, rabbits or the
largest-bodied lizards and anurans. Short fangs may also be
less likely to break when meeting tough arthropod exoskele-
tons or reptile scales [10,11], or during extended struggles
with bird, reptile, amphibian or arthropod prey that are
often bitten and held until death [47,48]. Finally, longer
fangs may assist in making contact with more evasive mam-
malian prey (e.g. [49]), as occurs with the evolution a jaw
mobility in some fishes [50,51] The evolution of fang length
based on taxonomic diet composition may therefore stem
from a complex suite of these putative selective forces, of
which none are mutually exclusive [11].

Previous work has jointly emphasized the ability of snakes
to dynamically reposition fangs during a strike [27,52] and the
stochastic elements of the strike that often lead to very frequent
off-target fang placement in prey tissue [27,53,54], calling into
question a selectionist view of fang length evolution. Yet, if
fangs evolved neutrally, wewould not expect fangmorphology
to covary with diet, as we show here. On average, deeper injec-
tion of venom is more lethal [55], so relatively wide prey might
indeed exert selection on fangs, where a difference of 1 mm in
length makes injection of venom in deeper tissues layers more
likely. It is also important to note that fang curvature has
demonstrated functional significance in strike kinematics
[44,56], and this feature of fang shape might also interact
strongly with prey morphology and envenomation strategy,
representing a crucial examination for future work. In particu-
lar, curvature may delimit short-fanged reptile specialists from
short-fanged amphibian specialists, given that stout, curved
fangs can reduce breakage [10]. Generally, functional studies
of penetrance and breakage of differently shaped fangs will
be crucial to a deeper understanding of the nature of selection
on fang shape and the function significance of variation when
biting different prey taxa.

Broadly, our results suggest that snake fang length may
present an axis for trophic diversification of snakes in a pheno-
type that forms the physical interface of predator–prey
interactions. Our correlative results lay out a continuum of
relative fang lengths that have evolved repeatedly alongside
shifts in life history (e.g. smaller fangs and amphibian eating
in Causus, Ovophis and Gloydius). Predator and prey traits
have been best studied in the context of coevolution, where
trait matching hypotheses for continuous traits provide the
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highest opportunity for the generation and maintenance of
trait diversity, as compared to ‘bigger is better’ arms-race
dynamics, which often reduce phenotypic diversity [57].
While we lack the detailed information on prey shape that is
required to liken snake fang length to the diversity in hum-
mingbird bill length as it relates to flower length, our results
support complex natural selection on fang length associated
with overall head size and dietary ecology.
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